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Certain problems of acoustic wave propagation in a medium located in a gravita- 
tional field are considered on the basis of exact solution for one-dimensional mo- 

tion of the medium. 

1. Fundamental equation8 and the general solution for one- 

dimensional motion of medium. Equations of one-dimensional motions of 
a medium in a gravitational field are of the form 

This system uniquely defines velocity u and density p for a given equation of state 
p = p (p). Introducing new variables w and i, we obtain [1] 

where c is the speed of sound. After transformation of variables t = t (w, i) and 
x = J: (w, i) the system of equations becomes 

8X 
&$t_&-0, ~-u$+e+o 

Let 
t w 

=x9 I$ = 4~ NJ, 9 

then from (1.2) we have 

W gt2 

If the equation of state is given in the form p = Ap” f B, then c2 = i (n 

the general solution of Eq. (1.5) is 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

1) and 
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9 = I$ [Fl (V2 (2r + 1) i + w> + F,) (d2 (2r + 1) i - w)] (1.6) 

3-n 2r +3 
r= 2(n-1) Or r1 = ar I 

Relationships (1.3) (1.4) and (1.6) constitute the general solution of system (1.1) for 
p = Ap” + B, where n = (2r + 3) / (2r + 1) and r is an integer. 

In the majority of practically interesting problems it is simpler to seek a direct solu- 
tion of the system of Eqs. (1.1) instead of the inverse one. Two such cases (u = -1 
and n = 3) are considered below. 

1) Let p = - A / p + B. (This relationship yields Hooke’s law (T = EE, if 

one takes into consideration that stress o .= --p, strain E = o. / p - 1, and sets the 
Young’s modulus E = B and Ep, z= A.) 

In this case it is easier to seek the solution by writing the system of equations in La- 
grangian coordinates. Taking into account that dp = -_AdV, we obtain 

where R: (E, t) and E (,x, t) are, respectively, the Eulerian and Lagrangian coordinates 
of a point. The general solution of system (1.7) is of the form 

(1.8) 

2) p = A@ + B. (This relationship approximates the equation p = A$.) 
Taking into consideration the relationship c a = dp / dp = 3Ap2 and substituting 

zz = l/a (u + p) and c = 1/2 (a - fJ), we represent system (1.1) in the form 

$+a+-g, 

whose general solution is 

F, (a + gt, &?x + a”) = 0, F, (P + @, 2gx + B”) = 0 (1.9) 

2. Let us consider some specific solutions for the cases of p = - A / p f B and 

p = Ap3 + B. 
1) The case p = -A / p + B. First, we consider the solution for the unper- 

turbed medium 
U (X = 0) z5 0, V (X = 0) = V, 

and determine the variation of density with altitude. From the general solution (1.8) we 

obtain 
F, (l/;r t) + F, (-fl t) = 0, F, (0 t) - F, (-7/x t> = 0 

taking into account that for x = 0 by definition q (x) = 0 . Hence 

F, (q + l/ii: ‘) = F, (q - J&i t) = 0, b’ = v, + gq (x)/A (2.1) 
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Let us determine Q (x). The definition of 4 (x) and the second of formulas (2.1) imply 
that 

from which 

4 (4 = g (VA + 2gpo2z - f/a) (2. ‘4 

Substituting q (z) into (2.1), we obtain 

p = pa (1 + 2&4-l gpO%)-‘/a 

Let us consider now the solution for a traveling sinusoidal wave. For a wave propaga- 
ting upward the boundary conditions are 

U+ (x = 0) = a0 sin wt 

and for a wave propagating downward 

U_ (x = h) = Na sin wt 

From the general solution (1.8) we obtain 

u+ (X = 0) =: F2 (_YrSit) = U, sin wt 

a- (J: = h)= F, (q(x= h)+ 1Gi t) = uO sin ot 

Here and below q (x) is determined by formula (2.2). From this we obtain 

Here and in what follows we consider the question whether for a given equation of 
state p = p (p) a difference in the velocity amplitudes of waves propagating up- and 

downward can exist in a medium under the same conditions. As shown by solution (2.3) 

in the case of the equation of state of the form p = --A f p + B, there is no differ- 
ence in the velocity amplitudes. It will be shown below that for other equations of state 
the velocity amplitudes U, (x = h) and U_ (x = 0) are different. 

2) Let us consider two specific solutions for the case of p = Ap3 + B. 
Let u zz 0. In this case the general solution (1.9) must be independent of time. Hence 

functions F, and pa assume the form 

F,(2gx: + a2) = 0, F,(2gz + 6") = 0 

from this 2gx f a 2 = 2gx + fl2 = ~2 and, consequently, 

a = - p = c = t/co2 - 2gx 

For u # 0 for the wave propagating upward in the medium we have 

Fi (a+ + gr, 2gx + a+“) = 0, p, = - i/C@2 - 2gx 
Let 

12.4) 

u+(5.0)= ?' 

i 

tlGtGt2 

, t<h or t>t, 
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Taking into account that td = ‘1, (a + p), we obtain from this 

a, (z = 0) = 2u+ (z 7 0) -I- r. zz 
i =+ -+ 

CO, t$a,/g-_=T, 

t -t~o/s~TT, 
(2.5) 

CO7 

Here and subsequently segment T, r- [t, -t cl0 i g, t, -t a, / g], a, = co. Frorn 

(2.4) and (2.5) we have 

a+2 -I- 2gx = 
i 

C2u+ -t CO)", t + a+ /g :-: T, 

CO27 t~ta+/g~T1', 

From which for U, and c, we obtain 

u+ = ; (a, + P,) = (2.6) 

i 

‘/* [ f((aL7+ t_ coy - 2gJ: - 1’ cc,‘? - ‘ ,qx 2 -1, t -ta+/gETT, 

0, t + a., I g ~6 Ta 

c+ = ; (a, -- ;j+) = 

i 

1/z [ j/c<r+ .i~ co)’ _ ZgJ: I- {co’ - :! /J:], t i- fJ+ /g (2 T; 

vfcoz - iigx, f +a,lS ZL 

For a wave propagating downward similar reasoning yields 

U_ .= 2 _!_ (a_ + 3-j = (2.7) 

[;MCoT- 2gs-V(2U_- I/c,“-2gh)2+2g(h--)l. t+P_lgi=~o 

, t-t ?_/gGTTp 

c/=+-3+ 

i 

‘I2 [V/c,” - 2gz + V(ZU_ - J&o” -2gtq+2g(h--)I, t+P_/g+zTp 

VFCo‘L - 2gx, t +P_/g@Tfi 

where 

TP = It, + P,,/g, ta + 90/g], po = - If6 - %h 

Let us compare the solutions for perturbations propagating up- and downward along a 

two meter long aluminum rod. The perturbations are induced by pulsed load applied to 

the lower or upper end of the rod. We assume this load to be p = 10 kg/mm2. For a 
pulsed load the relationship between velocity and voltage is u+ z CoAp+/ p s -_c,,E+ s 
c,p+ / E (E is the Young modulus). Taking this relationship $d the inequalitiesZgk< 
c0 &d p I E < 1 into account, from (2.6) and (2.7) we obtain 

pgh U+(5=h)+cu+~ J II ’ 

An=Iu+(z=h)I--Ju-(~=O),--, +=:s 
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Since for aluminum E = 7000 kg/mm and CO = 5500 m/set, we have 

Au-_, iO-’ m/set, uz8m/sec, Au/u= I. 25.104 

8, Let us consider the linear approximation u / c (( 1. The convective terms may 
in this case be neglected and the system of Eqs. (1.1) written as 

~+2$&-g, Lk$..G au + nAp”-l- = 0 
8X 

(3.1) 

p=Ap”+B 

Let 
pWl(.J-, ~)=py_ (n ;-)R" 

+ +(T 4 

Taking into account that CO’ = nAoon-r and the term I# (5, t)au/ 8~ is of the second 

order of smallness, we transform the system of Eqs. (3.1) to the form 

?E+--= n.4 a+ 
n-l a;c 

o 
’ 

2% + [Co2 - (n - 1) @] 2 = 0 
n-l at (3.2) 

Differentiating the first equation of system (3.2) with respect to t and the second one 

with respect to I and subtracting the second from the first, we obtain 

Introducing the new variable 2, we obtain 

Let us consider the approximate equation 

We seek a solution in the form 

u = us exp {jot - ifL (2 - 20)) 

Substituting into Eq. (3.3) ( *) , we obtain 

The general solution is of the form 

u=exp{--} f (ul (co) exp J_ + u2 ((I)) exp J,) dw 
--cm 

J+ = i(ot t i (2 - 20) f[el” $- &s .~. 
where ur (0) and u2 (0) are determined by boundary conditions. Taking into account 
that 

* ) E d it o r ’ s n o t e . No equation of this number appears in the original Russian text. 
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zo==2, 2=2 
v 

-1- (n - 1) P ~ 2 _ 01 - 1) ho.” 
CO2 (.“2 

__ [@ ;-I; fix] 

and assuming that o > (n - 1) g / (4c,), we find 

u M 1 + tn ,t‘j “21 f [ (UI (w) exp J_” -t u2 (w) exp 1,“) f&0 
-cc 

J+“= jotf jz l+ 
t 

(n - l)P 
4c,,2 1 

4. An experiment was carried out with the view to determining the difference in the 
amplitude of signals produced by waves propagating up- and downward in a medium. 

Short pulse signals (10 -20 and 60 - 80 nsec)were simultaneously applied to the two two- 
meter long aluminum rods fixed in the same manner and insulated by brass tubes. Pulses of an 
amplitude of 1-2 V were supplied to piezoelectric transducers attached to rod ends and 

completely insulated. Signals were fed to the bottom of one rod and to the top of the 
other. For maximum attenuation of wave reflection the rod ends were damped by rubber. 
The amplitude of the output signal was of the order of 0.5 - 1.5 mV. 

This experiment had shown that when the acoustic wave propagates upward, the ampli- 
tude of output voltage was 1.2 - 1.5 mV, while in the case of wave propagating down- 
ward this amplitude was 0.4 - 0.5 mV. The results of derived solutions were thus quali- 
tatively confirmed. It is interesting to note that the accuracy of this experiment was 
sufficient for demonstrating the investigated phenomenon in spite of the small length of 

the rod. 
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The method of simplifying systems of equations with small nonlinearities and dis- 

persion is considered. Such systems differ from the linear hyperbolic system by a 
certain integro-differential operator with a small parameter. Method is based on 
the reduction of input equations to the normal form and subsequent recurrent pro- 
cedure. In the case of a wave propagating along one of the characteristics of the 

system (single-wave processes) the first approximation by this method leads to 
known Burgers, Korteweg-de Vries, Klein-Gordon, and others equations which were 
first derived for specific physical models, and later for a more general system of 


